Existence and Stability of a Two-parameter Family of Solitary Waves for an Nls-kdv System
نویسنده
چکیده
We prove existence and stability results for a two-parameter family of solitary-wave solutions to a system in which an equation of nonlinear Schrödinger type is coupled to an equation of Korteweg-de Vries type. Such systems model interactions between short and long dispersive waves. The results extend earlier results of Angulo, Albert and Angulo, and Chen. Our proof involves the characterization of solitary-wave solutions as minimizers of an energy functional subject to two constraints. To establish the precompactness of minimizing sequences via concentrated compactness, we establish the sub-additivity of the problem with respect to both constraint variables jointly.
منابع مشابه
Multi fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects
Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be co...
متن کاملPeriodic Travelling Waves of the Short Pulse Equation: Existence and Stability
We construct various periodic travelling wave solutions of the Ostrovsky/HunterSaxton/short pulse equation and its KdV regularized version. For the regularized short pulse model with small Coriolis parameter, we describe a family of periodic travelling waves which are a perturbation of appropriate KdV solitary waves. We show that these waves are spectrally stable. For the short pulse model, we ...
متن کاملThe Deterministic Generation of Extreme Surface Water Waves Based on Soliton on Finite Background in Laboratory
This paper aims to describe a deterministic generation of extreme waves in a typical towing tank. Such a generation involves an input signal to be provided at the wave maker in such a way that at a certain position in the wave tank, say at a position of a tested object, a large amplitude wave emerges. For the purpose, we consider a model called a spatial-NLS describing the spatial propagation o...
متن کاملPeriodic Traveling Waves of the Regularized Short Pulse and Ostrovsky Equations: Existence and Stability
We construct various periodic travelling wave solutions of the Ostrovsky/HunterSaxton/short pulse equation and its KdV regularized version. For the regularized short pulse model with small Coriolis parameter, we describe a family of periodic travelling waves which are a perturbation of appropriate KdV solitary waves. We show that these waves are spectrally stable. For the short pulse model, we ...
متن کاملSimplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas
The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.
متن کامل